

Mortality-Indexed Annuities

Managing Longevity Risk via Product Design

Andreas Richter Frederik Weber

Longevity Five New York City

Agenda

- Introduction: Motivation and Related Research
- Mortality-Indexed Annuities as a Product Design Proposal
- Simulation Framework and Benchmark
- Selected Results
- Conclusion

Introduction

Motivation - Background

- Demographic Transition worldwide phenomenon (Oeppen/Vaupel, 2002)
 - Decreasing birth rates (Berkel et al., 2002)
 - Reason: Changing societal and family structures
 - Decreasing mortality (Willets, 1999; Kytir, 2003)
 - Reason: "better" living, working, environmental conditions; medical advances; health consciousness
- Consequences:
 - Changing age structures (age pyramids) (Sinn, 2004)
 - burden for PAYGO social security systems
 - Globally increasing life expectancies (Vaupel, 1986; Oeppen/Vaupel, 2002)
 - Societal achievement, also holds longevity risk

Introduction

Individual and Aggregate Longevity Risk

Individual Longevity Risk

- Risk of individual deviations of lifetime from average. Sufficient financial means during retirement or post-working ages? (MacMinn et al., 2006)
- Social security tends to provide lower benefits than initially expected (Schmähl, 2001)
- Individuals challenged to adjust long-term saving/consumption to uncertain, longer lifetime (*Bloom et al.*, 2001); possibly by transferring longevity risk to insurer (life annuity)

Aggregate Longevity Risk

- Uncertainty regarding correct projection of future average mortality (Blake/Burrows, 2001)
- Strong, worldwide correlation (Zahn/Henninger, 1942); potential for accumulative losses
- Hardly diversifiable or (re)insurable (Riemer-Hommel/Trauth, 2005)

Introduction

Longevity Risk – Annuity Markets

- **Annuity Puzzle**: empirically low demand for life annuities despite theoretical optimality (*Yaari, 1965*)
 - Several explanations exist in literature (Davidoff et al., 2005; Brown/Orszag, 2006; Van de Wen/Weale, 2006; Schulze/Post, 2006; Milevsky/Young, 2007)
 - Among others: prices could be too high or perceived to be excessive (Mitchell et al., 1999; Murthi et al., 1999; Finkelstein/Poterba, 2002)
 - partly justified due to strong correlation

MIA as a Product Design Proposal

Risk Management Options for Addressing Longevity Risk

- Conservative Pricing
 - Limited by competition, regulation
 - Limited marketability of excessively priced products (e.g. Mitchell et al., 1999)
 (\$\Rightarrow\$ tax advantages and other incentives designed to mitigate insufficient demand)
- Natural Hedging (Cox/Lin, 2007; Wetzel/Zwiesler, 2008)
- Securitization
- Leaving the annuity market (?)
- Modification of actuarial product design

MIA as a Product Design Proposal

Transferring Longevity Risk to Policyholders

Institute for Risk and Insurance Management

- Example: private health insurance in Germany
 - Design similar to life annuities: recurring, constant premiums; lifelong coverage
 - Policyholders bear systematic risk of increasing health expenditures (premium adjustments)
- Also: Transfer of risk successful with respect to investment risk (e.g., unit-linked life insurance/life annuities)
- Proposal: Mortality-Indexed Annuity (MIA)
 as modification of a constant life annuity
 - New: adjustments of annuity payments based on actual mortality experience: higher/lower portfolio mortality → higher/lower benefits
- Result: limited risk for insurer; policyholders' perspective?

MIA as a Product Design Proposal

Assumptions – Indexed Product

- Immediate annuity sold against (actuarially fair) single premium;
 constitutes initial per-policy reserve
- Evolution of reserves due to inheritance effect and interest
- Annual adjustments of benefits according to equivalence principle (best estimate of mortality, based on actual portfolio experience)
- Regulatory requirements neglected (taxation, calculation requirements, model choices etc.)
- Further details
 - No period certain
 - Constant interest rate
 - Pure net perspective without costs or expenses; actuarially fair price

Simulation Framework and Benchmark

Simulation - Model

- Monte-Carlo simulation (N=10,000 paths)
 - Consider a large portfolio of homogeneous risks over *T* periods
- **General** mortality follows **Lee-Carter model** (*Lee/Carter, 1992; Brouhns et al., 2002*)
- Best estimate of mortality for remaining periods based on Lee-Carter, accounting for mortality experience.
- Mortality data of British annuitants, Source: CMI
- Males, initial age x=60, single premium π_0 =100,000, contract term T=41 (last payment due on 100th birthday)

Simulation Framework and Benchmark

Benchmark

- Idea: constant life annuity with guaranteed benefits serves as a benchmark identical single premium π_0
- Starting point: Initially (t=0), benchmark benefits equal to those from MIA, as calculation based on identical assumptions;
 but: benefits reduced by safety loading (see below)
- Mortality correctly projected on average, but subject to uncertainty
 - Calculation sufficient on average, but underlies strong fluctuations
 - Insurer charges **safety loading** to reduce deficit risk to α

Simulation Framework and Benchmark

Simulation - Benchmark

- Single premium assumed fixed (identical price π_0), benefits reduced from FV₀ to FV₀^{α} to incorporate safety loading
 - Difference accumulated over contract term in order to reduce deficit risk
- Large potential for surplus reserves; increased by safety loading
 - **Pro-rata** surplus share for policyholders e.g. **X=75**% (in Germany since 2008)

Simulation Framework and Benchmark

Simulation – MIA Advantageousness

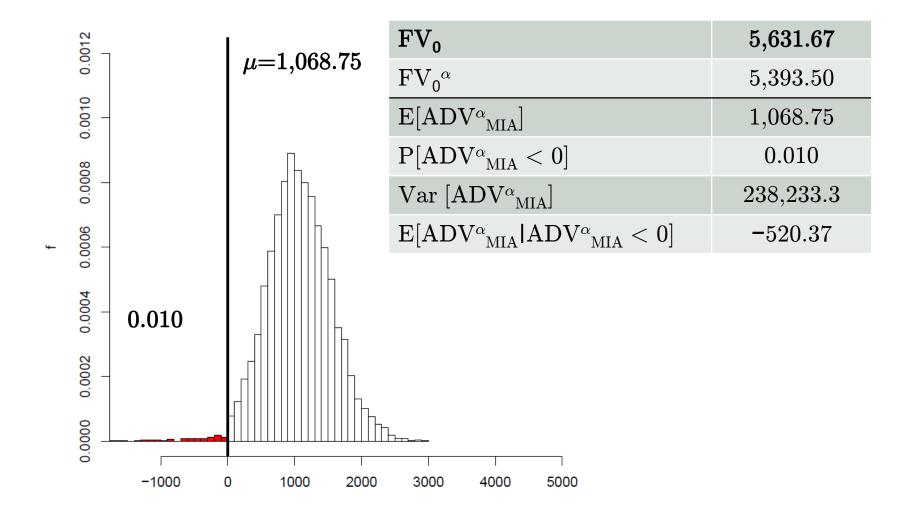
 Measure of "advantageousness": actuarial present value of differences of benefits from both products, subject to actual mortality:

$$ADV_{\text{MIA}}^{\alpha} = \sum_{k=0}^{T-1} \left\{ (FV_k - FV_0^{\alpha}) \cdot {}_k \tilde{p}_x \cdot v^k \right\}$$
$$-X \cdot \max\{0; V_{T,\alpha}^{*,\text{conv}}\} \cdot {}_{T-1} \tilde{p}_x \cdot v^{T-1}$$

• Consider empirical distribution/coefficients of $\mathrm{ADV}^{\alpha}_{\mathrm{MIA}}$

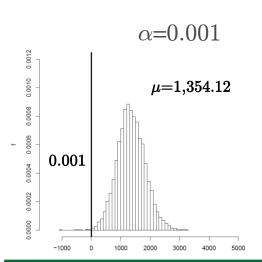
Results – i=3%, $I_{60}=100,000$, $\alpha=0.010$

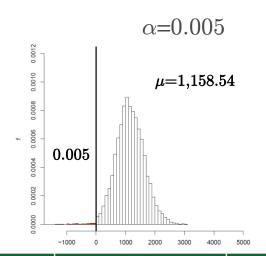
Institute for Risk and Insurance Management

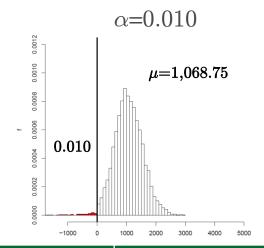


Results – i=3%, $I_{60}=100,000$



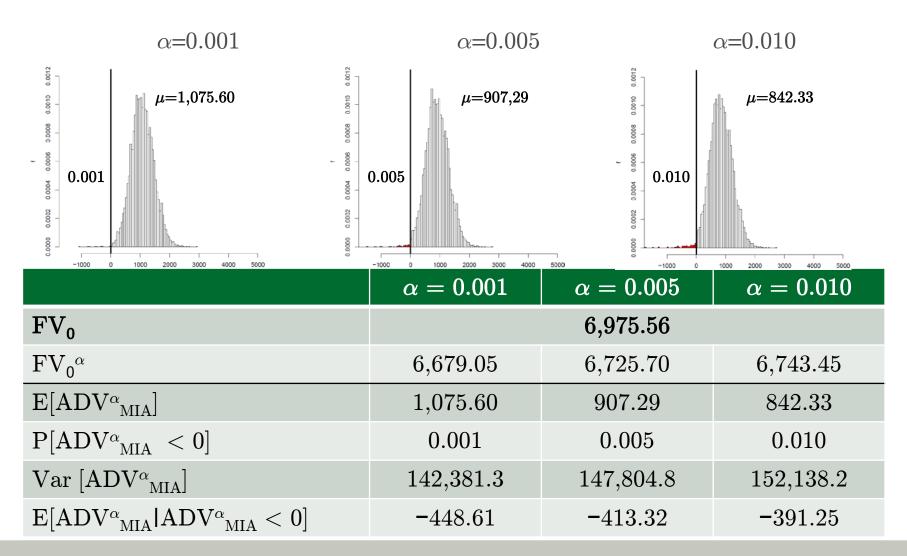






	lpha=0.001	lpha=0.005	lpha=0.010
FV_0	5,631.67		
$\mathrm{FV_0}^lpha$	5,330.00	5,373.50	5,393.50
$\mathrm{E}[\mathrm{ADV^{lpha}}_{\mathrm{MIA}}]$	1,354.12	$1,\!159.54$	1,068.75
$ ext{P}[ext{ADV}^{lpha}_{ ext{MIA}} < 0]$	0.001	0.005	0.010
${ m Var} \ [{ m ADV}^{lpha}_{ m MIA}]$	220,915.5	229,915.0	238,233.3
$\mathrm{E}[\mathrm{ADV^{lpha}}_{\mathrm{MIA}} \mathrm{ADV^{lpha}}_{\mathrm{MIA}} < 0]$	-321.29	- 492.31	-520.37

Results – i=5%, $I_{60}=100,000$



Results – i=3%, $l_{60}=100,000$ **vs**. 1,000

$I_{60}=100,000$
<i>i</i> =3%, <i>l</i>
1,000

	lpha=0.001	lpha=0.005	lpha=0.010	
FV_0		5,631.67		
$\mathrm{FV_0}^lpha$	$5,\!330.00$	$5,\!373.50$	$5,\!393.50$	
$\mathrm{E}[\mathrm{ADV^{lpha}}_{\mathrm{MIA}}]$	1,354.12	1,159.54	1,068.75	,
$ ext{P}[ext{ADV}^{lpha}_{ ext{MIA}} < 0]$	0.001	0.005	0.010	
${ m Var} \left[{ m ADV}^{lpha}_{ m MIA} ight]$	$220,\!915.5$	229,915.0	238,233.3	ò
$\mathrm{E}[\mathrm{ADV^{lpha}}_{\mathrm{MIA}} \mathrm{ADV^{lpha}}_{\mathrm{MIA}} < 0]$	-321.29	- 492.31	-520.37	
T23.7		E 621 67		

FV_0		5,631.67	
$\mathrm{FV_0}^lpha$	5,285.50	5,334.00	5,358.50
${ m E}[{ m ADV}^{lpha}_{ m MIA}]$	1,552.15	1,335.36	1,224.22
${ m P}[{ m ADV^{lpha}}_{ m MIA} < 0]$	0.001	0.005	0.010
${ m Var}\left[{ m ADV}^{lpha}{}_{ m MIA} ight]$	274,235.1	$285,\!507.6$	297,112.2
$\mathrm{E}[\mathrm{ADV^{lpha}}_{\mathrm{MIA}} \mathrm{ADV^{lpha}}_{\mathrm{MIA}} < 0]$	-329.35	- 501.95	-577.94

Conclusion

- Longevity risk creates highly correlated long-term contractual obligations for insurance companies.
- If longevity risk is considered a severe threat to insurability, alternative product design and risk (re)transfer to policyholders should be considered.
- MIA transfer a significant amount of risk to policyholders, but in return ensure insurability and offer substantial upside potential.
 - Mostly greater annuity payments, expected advantages strictly positive.
 - The more expensive the benchmark, the more advantageous the MIA.
 - The lower the interest rate, the stronger the MIA advantage.
 - A smaller insured portfolio increases the safety loading required by the benchmark product.

Conclusion: Further Research

- Refined actuarial modeling:
 - Stochastic investment returns from diversified portfolio
 - **Model uncertainty**: insurer does not know "true nature"
 - Benefit only adjustments beyond certain thresholds
 - Adjustments to mortality index (→ transparency vs. basis risk)
- Policyholders' risk aversion: (transferred) risk vs. (higher) benefits
 → more accurate analysis of risk allocation effects
- More explicit modeling of defaults

Mortality-Indexed Annuities

Managing Longevity Risk via Product Design

Andreas Richter Frederik Weber

Longevity Five New York City

