

Longevity risk and hedge effects in portfolios of life insurance products with investment risk

Ralph Stevens, Anja De Waegenaere, and Bertrand Melenberg

Tilburg University and Netspar

September 26, 2009

Contents

- Introduction
- Model
- Effect portfolio mix
- Effect survivor swaps
- Conclusions

Introduction

Model

Effect portfolio mix

Effect survivor swaps

Introduction

Measuring longevity risk

Longevity risk

Model

Effect portfolio mix

Effect survivor swaps

Measuring longevity risk

- Future survival probabilities are stochastic → uncertainty in payments of life insurance products;
- Longevity risk is often quantified by distributional characteristics of the discounted cash flows, assuming a constant and deterministic interest rate, r.
- Problem: interpretation?
 - In real world there is investment risk;
 - Level of future payments is uncertain → cannot (fully) hedge against investment risk;
 - When return is as least r, this risk measure is a conservative one.
- We use an asset-liability approach to quantify longevity risk.

Introduction
Measuring longevity

Longevity risk

Model

Effect portfolio mix

Effect survivor swaps

Longevity risk

- Focus on the effect of systematic longevity risk in a portfolio of life insurance products:
 - gender composition;
 - survivor annuities;
 - death benefits.
- Effect of investment risk when there exists longevity risk:
 - longevity risk ↔ investment risk;
 - investment risk \rightarrow hedge potential.
- Hedge effects of survival swaps:
 - survivor annuities;
 - basis risk.

Measuring longevity risk

Longevity risk

Model

Effect portfolio mix

Effect survivor swaps

Model

Introduction

Model

Evolution of assets

Risk measure

Sources of risk

Model

Effect portfolio mix

Effect survivor swaps

Evolution of assets TILBURG +

- Risk measure based on: $\mathbb{P}(A_T < 0)$.
- Evolution of the assets: R_{s+1} return, L_s liability payment

$$A_{s+1} = (A_s - \widetilde{L}_s) \cdot (1 + R_{s+1}), \text{ for } s = 0, \dots, T.$$

Terminal asset value:

$$A_T = A_0 \cdot \prod_{s=1}^T (1 + R_s) - \sum_{s=1}^T \widetilde{L}_s \cdot \prod_{\tau=s+1}^T (1 + R_\tau).$$

Capital requirement: required initial asset value in excess of the best estimate

$$A_0 = (1+c) \cdot BEL.$$

Introduction

Model

Evolution of assets

Risk measure

Sources of risk

Model

Effect portfolio mix

Effect survivor swaps

Risk measure

- Investment portfolio is decomposed in:
 - Best estimate portfolio, with return r_s^{be} ; Invested in zero-coupon bond \rightarrow eliminates interest rate risk in best estimate scenario;
 - Buffer portfolio, with return r_s^{bu} .
- Probability of ruin:

$$\mathbb{P}(A_T < 0) = \mathbb{P}(L > (1+c) \cdot BEL),$$

$$L \equiv BEL + \sum_{s=1}^{T} \left(\frac{\widetilde{L}_s - \mathbb{E}\left[\widetilde{L}_s\right]}{\prod_{\tau=1}^{s} (1 + r_{\tau}^{bu})} \right).$$

Note: interaction longevity and investment risk!

Capital requirement in excess of best estimate:

$$c = \frac{\mathbb{Q}_{1-\epsilon}\left(L\right)}{BEL} - 1.$$

Introduction

Model

Evolution of assets

Risk measure

Sources of risk Model

Effect portfolio mix

Effect survivor swaps

Focus on non-hedgeable risks: Best estimate portfolio invested in bonds.

We decompose L into four components:

- i) Best estimate of the liabilities; Deterministic, no uncertainty.
- ii) Pure longevity risk component; Uncertainty in L given expected returns.
- iii) Pure investment risk component;Uncertainty in L given expected cash flows.Hedgeable risk: we generally set this equal to zero.
- iv) Interaction investment and longevity risk component; Uncertainty in L which is not captured by the other components.

 **Additional uncertainty!

Introduction

Model

Evolution of assets

Risk measure

Sources of risk

Model

Effect portfolio mix

Effect survivor swaps

- Life insurance products:
 - Single life annuity;
 - Survivor annuity; ii)
 - Death benefit. iii)
- Uncertainty in forecasting models includes: Process risk, parameter risk, and model risk.
- Longevity risk:
 - Variants of Lee-Carter (1992)-model;
 - Variants of Cairns-Blake-Dowd (2006)-model;
 - P-Splines model (Currie, Durbin, and Eilers; 2004).
- **Investment risk:**
 - Bond prices: Vasicek model;
 - Stock prices: Brownian motion with drift.

Model

Evolution of assets

Risk measure

Sources of risk

Model

Effect portfolio mix

Effect survivor swaps

Effect portfolio mix

Introduction

Model

Effect portfolio mix

Effect interest rate risk Effect gender mix Effect product mix Effect death benefits I Effect death benefits II

Effect survivor swaps

Effect interest rate risk

- Buffer requirement depends on investment strategy and liability portfolio of insurer.
- Buffer portfolio invested in one-year bonds, best estimate portfolio:
 - Only one-year zero-coupon bonds;
 - Portfolio of bonds eliminating pure investment risk.
- Buffer requirements:

Product	$c^{1y,1y}$	$c^{\mathrm{elh,1y}}$
Male single life annuity	27.6%	6.1%
Female single life annuity	33.0%	6.9%

- We observe:
 - Investment risk might be large.

Introduction

Model

Effect portfolio mix

Effect interest rate risk

Effect gender mix
Effect product mix
Effect death benefits I
Effect death benefits II

Effect survivor swaps

Effect gender mix

Introduction

Model

Effect portfolio mix

Effect interest rate risk

Effect gender mix

Effect product mix

Effect death benefits I

Effect death benefits II

Effect survivor swaps

Conclusions

Solid curve: 100% bonds; dashed curve: 1/3 equity, 2/3 bonds; dotted curve: 100% equity.

- Longevity risk is higher for females than males;
- Investment risk significantly affects required buffer;
- Higher duration typically increases impact of investment risk.

Effect product mix

Solid curve: 100% bonds; dashed curve: 1/3 equity, 2/3 bonds; dotted curve: 100% equity.

- Survivor annuities can reduce longevity risk;
- Effect of hedge potential depends significantly on investment risk.

Effect death benefits I

- Investment risk affects hedge potential.
- Death benefit consists of a single payment at the moment the insured dies.
 - → effect of living longer = postponing payment.
- Hedge effects of death benefits are due to discounting effects!
- When there is no investment risk:

 The aggregate payments of the portfolio is independent of the number of survivors when:
 - single life annuity with a yearly payment of 1;
 - death benefit with a single payment $\delta = \frac{1+r}{r}$.

Introduction

Model

Effect portfolio mix

Effect interest rate risk

Effect gender mix

Effect product mix

Effect death benefits I

Effect death benefits II

Effect survivor swaps

Effect death benefits II

Effect portfolio mix
Effect interest rate risk
Effect gender mix
Effect product mix

Introduction

Model

Effect death benefits I
Effect death benefits II

Effect survivor swaps

Conclusions

Solid curve: 100% bonds; dashed curve: 1/3 equity, 2/3 bonds; dotted curve: 100% equity.

- As expected: death benefits can reduce longevity risk;
- Survivor annuities reduce hedge effects of death benefits;
- Hedge effects of death benefits are significantly influenced by investment risk.

Model

Effect portfolio mix

Effect survivor swaps

Model

Price

No basis risk

Basis risk

Conclusions

Effect survivor swaps

Model

- Mortality linked assets can reduce longevity risk.
- An often proposed product is a survivor swap or longevity bond.
- \blacksquare The payments of a survivor swap in year s are given by:

$$SS(s, ref) = S(s, ref) - K(s, ref).$$

- Without basis risk: survivor swaps can provide a perfect hedge for single life annuities;
- How well do they work:
 - In a portfolio of life insurance products?
 - When there is basis risk?
 - When there is investment risk?

Introduction

Model

Effect portfolio mix

Effect survivor swaps

Model

Price

No basis risk

Basis risk

- Survivor swaps will have a (not observable) price;
- Attractiveness of swaps depend on:
 - Hedge effect of survivor swap;
 - Price of the survivor swap.
- We do not observe a market price → we set reserve requirements in excess of best estimate of the liabilities & price of the swap.

Let $V_{VSS}(s_m, s_f)$ be the price of the swap:

$$A_0 = BEL + V_{VSS}(s_m, s_f) + \overline{c}(s_m, s_f) \cdot BEL.$$

Risk reduction can be interpreted as a maximum price.

Model

Effect portfolio mix

Effect survivor swaps

Model

Price

No basis risk

Basis risk

No basis risk

Introduction

Model

Effect portfolio mix

Effect survivor swaps

Model

Price

No basis risk

Basis risk

Conclusions

Solid curve: 100% bonds; dashed curve: 1/3 equity, 2/3 bonds;

dotted curve: 100% equity.

Survivor annuities can significantly affect hedge potential of survival swaps;

- Maximum number of swaps depends on investment risk;
- With survivor annuities: investment risk generally reduces hedge effect of swaps.

Basis risk

Introduction

Effect portfolio mix

Effect survivor swaps

Model

Model

Price

No basis risk

Conclusions

Basis risk

- Mortality rates of insureds and general population differ.
- Denuit (2008) uses a Cox-type relational model:

$$\log(\mu_{x,t}^{(h)}) = \alpha^{(h)} + \beta^{(h)} \cdot \log(\mu_{x,t}^{(g)}),$$

with
$$\alpha^{(m)} = -1.54$$
, $\alpha^{(f)} = -1.02$, $\beta^{(m)} = 0.82$, $\beta^{(f)} = 0.91$.

Basis risk significantly affects hedge potential of survival swaps.

Model

Effect portfolio mix

Effect survivor swaps

Conclusions

Conclusions

- Liability only approach might significantly underestimate reserve requirements;
- Product and gender mix affects required buffer;
- Investment risk affects hedge potential:
 - Gender mix and survivor annuities:
 A higher duration typically leads to a stronger effect of investment risk.
 - Death benefits:
 More investment risk leads to a weaker hedge potential of death benefits.
 - Survivor swaps:Depends on the liability portfolio.
- Basis risk might significantly reduce the hedge potential of survivor swaps.

Model

Effect portfolio mix

Effect survivor swaps

Conclusions