Longevity Risk and Hedge Effects in a Portfolio of Life Insurance Products with Investment Risk

Discussion

Matthias Börger

September 2009

Helmholtzstraße 22 D-89081 Ulm

phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239 email ifa@ifa-ulm.de

ifa

Content and Results

The authors analyze

- interactions between longevity risk and financial risk
- capital requirements for different insurance portfolios
- hedge effects of various product mixes and asset allocations
- the hedge effect of longevity swaps

Main result

- Significant financial risk can arise from longevity risk
- This financial risk cannot be hedged
- In the traditional setting (financial risk is assumed to be completely hedged), the true risk might be significantly underestimated

Related observations

- The size of the buffer portfolio strongly depends on the asset allocation in the buffer portfolio
- The inclusion of survivor annuities and death benefits can reduce the buffer size significantly
- The asset allocation in the buffer portfolio affects the hedge potential of product mixes
- In general, a buffer portfolio consisting of bonds and stocks is optimal (in terms of buffer size)
- The hedge potential of survivor swaps with basis risk can be rather small

Comments on Setup and Modeling

- The liabilities are decomposed into components for best estimate liabilities, pure financial risk, pure longevity risk, and interactions between those risks
 - The interactions component is separated from the other components in a distinct way
 - The significance of financial risk due to longevity risk is highlighted very well
- Mortality model risk is allowed for by simultaneously applying different models
- Independence between mortality evolution and financial market evolution is assumed
 - Amongst others, Hanewald et al. (2009) show that there seems to be correlation
 - Taking this correlation into account might significantly affect results here
- The solvency criterion for computing the buffer size c only takes into account the terminal asset value
 - $P(A_T < 0|A_0 = (1+c) \cdot BEL) \le \varepsilon$
 - Even if the asset value A_T is positive, A_t < BEL could have occured
 - The criterion should allow for the insurer's solvency during the whole run-off
 - Alternative criterion: $P(A_1 BEL_1 < 0 \lor A_2 BEL_2 < 0 \lor ... \lor A_T BEL_T < 0 | A_0 = (1+c) \cdot BEL) \le \varepsilon$
- No reasoning for accepted default probability of 2.5% is provided
 - 0.5% (= accepted level under Solvency II) seems more intuitive

Possible Extensions or New Projects

- Implications of interactions between longevity risk and financial risk for Solvency II
 - In the standard model, risks are treated separately and such interactions are disregarded
- Optimal asset allocation in the buffer portfolio
 - 100% equity always requires largest buffer but also offers largest expected returns
 - What is the optimal asset allocation if the insurer wants to
 - minimize the initial buffer size?
 - optimize his returns?
 - reduce the buffer size as soon and as much as possible in the portfolio run-off?
- Best estimate portfolio with limited cash flow matching
 - Bonds with extreme maturities do not always exist
 - More realistic scenario of portfolio with bonds of maturities up to 10 or 15 only
- Portfolios of contracts with different ages instead of single age portfolios
- For portfolios with survivor annuities, sometimes more swaps than contracts are optimal
 - There seems to be a partial hedge of survivor annuities by swaps for other sex
 - Can this hedge be specified and how effective is it?

Minor Comments

- In main text, parameter risk is said to be considered in mortality models
 - According to the appendix, this is done only for the Lee-Carter class of models
- In proof of Proposition 2, the BEL are 1/r
 - The proposition is nevertheless correct
- The interpretation of d in Figure 2 is not obvious
 - Are the numbers on the horizontal axis percentages?
 - Or is it possible to include more than one death benefit into a single life annuity contract?
- Left panels of Figures 3, 5, and 6: Printing buffers for s>1 may be confusing
 - s=1 offers the best possible hedge
 - Purchase of additional swaps is not reasonable