

Risk and Valuation of Mortality Contingent Catastrophe Bonds

Daniel Bauer & Florian Kramer

Market and Securities

Model and Estimation

Results

Market and Securities

Model and Estimation

Results

- Cox, Lin & Wang (2006,JRI), Lin & Cox (2008,IME)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → model for mortality index: GBM & multiplicative jump component
- Chen & Cox (2009,JRI)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → Lee-Carter extensions with <u>multiplicative</u> jump component
- Cox, Lin & Milidonis (2009)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → regime-shifting models

- Cox, Lin & Wang (2006,JRI), Lin & Cox (2008,IME)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → model for mortality index: GBM & multiplicative jump component
- ► Chen & Cox (2009,JRI)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → Lee-Carter extensions with multiplicative jump component
- Cox, Lin & Milidonis (2009)
 - pricing models for mortality-contingent securities in incomplete market framework
 - → regime-shifting models
- Here:
 - risk assessment, comparison to official loss profiles
 - "endogenous" valuation (similar to Lin & Cox (2005,JRI); Bauer, Börger & Ruß (2009,IME)) → problems...
 - → <u>affine</u> mortality model with <u>additive</u> jump components

Market and Securities

Model and Estimation

Results

	Vita Capital Ltd.	Vita Capital II Ltd.			Tartan Capital Ltd.		
Issued	Nov. 2003		Apr. 2006	May 2006			
Class ⁵	A	В	C	D	A*	В	
Tranche Size	\$400mn	\$62mn	\$200mn	\$100mn	\$75mn	\$80mn	
Arranger	Swiss Re		Swiss Re	Goldman Sachs			
Protection for	Swiss Re		Swiss Re	Scottish Re			
Rating ⁶	A3/A+	Aa3/A-**	A2/BBB+**	Baa2/BBB-**	Aaa/AAA	Baa3/BBB+	
Attachment Point	130%	120%	115%	110%	115%	110%	
Detachment Point	150%	125%	120%	115%	120%	115%	
Coupon (bps)	LIBOR+135	LIBOR+90	LIBOR+140	LIBOR+190	LIBOR+19	LIBOR+300	
Expected Maturity	4 years	5 years	5 years	5 years	3 years	3 years	
Covered Area	US 70%, UK 15%, F 7.5%,	U	S 62.5%, UK 17	US 100%			
	I 5%, CH 2.5%	D 7	.5%, J 7.5%, CA				

	Osiris Capital Plc.				Vita Capital III Ltd.				
Issued	Nov. 2006				Dec. 2006. Jan. 2007				
Class	B1*	B2	C	D	A-IV*	A-V*	A-VI*	A-VII	
Tranche Size	Euro 100mn	Euro 50mn	\$150mn	\$100mn	\$100mn	\$100mn	Euro 55mn	Euro 100mn	
Arranger	Swiss Re				Swiss Re				
Protection for	AXA				Swiss Re				
Rating	Aaa/AAA	A3/A-	Baa2/BBB	Ba1/BB+	Aaa/AAA	Aaa/AAA	Aaa/AAA	Aa2/AA-	
Attachment Point	114%	114%	110%	106%	125%	125%	125%	125%	
Detachment Point	119%	119%	114%	110%	145%	145%	145%	145%	
Coupon (bps)	EURIBOR+20	EURIBOR+120	LIBOR+285	LIBOR+500	LIBOR+21	LIBOR+20	EURIBOR+21	EURIBOR+80	
Expected Maturity	4 years	4 years	4 years	4 years	4 years	5 years	4 years	5 years	
Covered Area	F 60%, J 25%, US 15%				US 62.5%, UK 17.5%, D 7.5%, J 7.5%, CAN 5%				

	Vita Capital III Ltd. (cont.)				Nathan Ltd.	SCOR Mortality Swap	
Issued	Dec. 2006. Jan. 2007			Feb. 2008	Jan. 2008		
Class	B-I	B-II	B-III	BV*	BVI*	A	na
Tranche Size	\$90mn	\$50mn	Euro 30mn	\$ 50mn	Euro 55mn	\$100mn	100mn + Euro 36mn
Arranger			Swiss Re			Munich Re, JPMorgan	JPMorgan
Protection for			Swiss Re			Munich Re	SCOR
Rating	A1/A	A1/A	A1/A	Aaa/AAA	Aaa/AAA	A2/A-	na
Attachment Point	120%	120%	120%	120%	120%	120%	115%
Detachment Point	125%	125%	125%	125%	125%	130%	125%
Coupon (bps)	LIBOR+110	LIBOR+112	EURIBOR+110	LIBOR+21	EURIBOR+22	LIBOR+135	na
Expected Maturity	4 years	5 years	4 years	5 years	4 years	5 years	4 year
Covered Area		US 62.5%, UK	17.5%, D 7.5%, J	7.5%, CAN 59	6	US 45%, CAN 25%, UK 25%, D 5%	US, Europe

Table 3: Comparison of all CATM deals from 2003 until 2008 (Source: New Issue Reports from S&P and Moody's; Bloomberg data).

⁵The tranches marked with * are guaranteed by monoline insurers. Most of these tranches were downgraded in 2008 due to financial trouble of the guarantors.

⁶Rating at Issuance from Moody's / S&P – the ratings marked with ** were upgraded by S&P.

Structure of a CATM transaction

▶ Combined Mortality Index i_t contingent on the relative, weighted mortality experience of a certain population as reported from official entities in the years t and t-1:

$$i_t = rac{rac{1}{2} (\hat{q}_t + \hat{q}_{t-1})}{rac{1}{2} (\hat{q}_{2005} + \hat{q}_{2004})}$$
 where $\hat{q}_t = \sum_{ ext{all } x} \omega_{x,m} \hat{q}_{m,x,t} + \omega_{x,f} \hat{q}_{f,x,t}$

Loss Tranche(a, d)

$$I_t^{(a,d)} = \min \left\{ \max \left\{ I_{t-1}, \frac{i_t - a}{d - a} \right\}, 100\% \right\}$$

with $I_{2006}^{(a,d)} := 0$, a Attachment Point (e.g. 110%), d Detachment Point (e.g. 120%).

Market and Securities

Model and Estimation

Results

Stochastic Mortality Modeling

- Array of stochastic mortality models available: Cairns et al. (2006, 2007,...)
- Affine stochastic mortality: Biffis (2005,IME), Dahl (2004,IME), Schrager (2006, IME)
 - → need jumps
- ► Here: → want, parsimonious affine structure ...no suitable candidate
 - → "coherent" specification

Stochastic Mortality Modeling

- Array of stochastic mortality models available: Cairns et al. (2006, 2007,...)
- Affine stochastic mortality: Biffis (2005,IME), Dahl (2004,IME), Schrager (2006,IME)
 - → need jumps
- ► <u>Here</u>: → want, parsimonious affine structure ...no suitable candidate
 - → "coherent" specification
- (Yet another) model:
 - Mean-reverting or not mean-reverting? Trend?
 - ⇒ Rely on demographic data and research:

Positivity, Vaupel line (Oeppen & Vaupel (2002,Science)), "realist view on future longevity" (Olshansky, Carnes & Désquelles (2001, Science), Carnes & Olshansky (2007, Pop&DemRev)), rectangularization (Wilmoth & Horiuchi (1999, Demography)), mortality spikes with additive influence

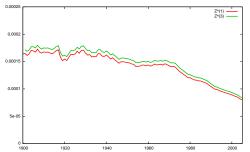
Our model

Our model

$$\begin{array}{lcl} \mu_t(\mathbf{X}) & = & e^{b(\mathbf{X}+t)} \; \mathbf{Y}_t + \Gamma_t \\ \text{where} & d\mathbf{Y}_t & = & \underbrace{\alpha \left((\mathbf{Y}_0 - \boldsymbol{\beta}^{(2)}) \, e^{-\boldsymbol{\beta}^{(1)} \, t} + \boldsymbol{\beta}^{(2)} - \mathbf{Y}_t \right) \, dt}_{*} + \underbrace{\sigma \, \sqrt{\mathbf{Y}_t} \, dW_t}_{\text{"positivity"}}, \end{array}$$

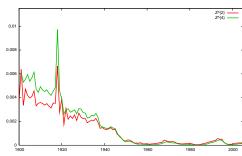
Solution to * disregarding stochastic part (ODE)

- $t_{IP} \approx 44$ (inversion point)
- $\overset{\circ}{e}_{\infty} \approx$ 86 years
- → in line with demographic research


Estimation

- Simulated Maximum Likelihood Estimation
- Particle Filter for Likelihood Evaluation ("Monte Carlo version of Kalman filter")
- Issues:
 - \triangleright p_x 's depend not only on μ_x , but on $[\mu_x, \mu_{x+1})$
 - → Consider 4-dimensional state vector

$$\left(\underbrace{Y_t}_{Z_t^{(1)}},\underbrace{\Gamma_t}_{Z_t^{(2)}},\underbrace{\int_t^{t+1} e^{b(s-t)} Y_s ds}_{Z_t^{(3)}},\underbrace{\int_t^{t+1} \Gamma_s ds}_{Z_t^{(4)}}\right)$$


- regularity of likelihood function, local maxima in optimization → Sorry, Dr. Brockett!
- used many many starting vectors based on smaller samples, final optimization with bigger sample
- Pros:
 - coherent ML estimation, model comparisons possible
 - "disentangle" jumps from continuous part, obtain distribution of states

Expected values of the states

- Allocation of initial improvements to jump component
- Clear jump event in 1918 → Spanish Flue
- Non-pandemic events noticeable (WWII or Vietnam war). Events affecting elderly population covered by cont. part

- Jumps necessary?
- → p-value of LR test essentially zero, Bayes factor exp{1688.2}
- ⇒ Strong statistical evidence

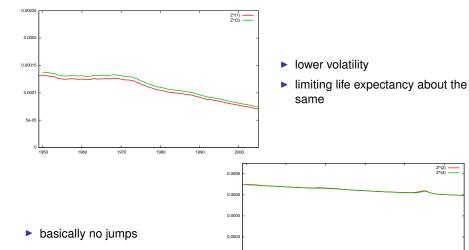
Market and Securities

Model and Estimation

Results

Loss Profiles (Tartan deal)

	PD(%)	EL(%)	Spread(bps)
Cl. B Tranche(110%-115%) Jump Model, data 1901-2005 Model without jumps, data 1901-2005 Reported	18.08	16.60	693
	9.69	3.35	111
	0.88	0.54	–
Cl. A Tranche(115%-120%) Jump Model, data 1901-2005 Model without jumps, data 1901-2005 Reported	15.24	14.04	582
	0.47	0.12	4
	0.29	0.16	-


- Risk measures exceed official profiles
- "Actuarially fair" spread for jump model exceeds market spread (300bps for Tranche B)

1970

1990

Results

Estimation results based on 1950-2005 data

0.0002

Loss Profiles (Tartan deal)

	PD(%)	EL(%)	Spread(bps)
Cl. B Tranche(110%-115%) Jump Model, data 1901-2005 Model without jumps, data 1901-2005 Jump Model, data 1950-2005 Reported	18.08	16.60	693
	9.69	3.35	111
	0.89	0.80	32
	0.88	0.54	-
Cl. A Tranche(115%-120%) Jump Model, data 1901-2005 Model without jumps, data 1901-2005 Jump Model, data 1950-2005 Reported	15.24	14.04	582
	0.47	0.12	4
	0.71	0.64	26
	0.29	0.16	-

- Risk characteristics strongly depend on estimation period
- Investors' beliefs in line with permanent regime change

"Endogenous" valuation

- ▶ Idea: (cf. Lin & Cox (2005,JRI), Bauer, Börger & Ruß (2009,IME))
 - Derive risk-adjusted parametrization based on primary insurance prices yields at least an upper bound for mortality derivatives
 - → Fast calibration due to affine structure, results based on 73 term-life quotes

"Endogenous" valuation

- ► Idea: (cf. Lin & Cox (2005,JRI), Bauer, Börger & Ruß (2009,IME))
 - Derive risk-adjusted parametrization based on primary insurance prices yields at least an upper bound for mortality derivatives
 - → Fast calibration due to affine structure, results based on 73 term-life quotes

What happened?

- lower baseline mortality: differences in populations, selection effects
- permanent, small, high-frequency jumps: selection effects approximation to ultimate mortality
- → These effects overshadow potential mortality risk premium. Risk measures basically zero.

Market and Securities

Model and Estimation

Results

Conclusion

- Explain structure of CATM securitization, provide market overview
- Present time-continuous stochastic mortality model for the analysis of CATM bonds. With "only" eight parameters, our model...
 - ... displays basic features that are in line with demographic data and research
 - ... shows jumps that are structurally consistent with catastrophic mortality events observed in the last century
 - ... offers a high degree of analytical tractability due to affine structure

Primary result:

Calculated risk profiles significantly exceed official loss profiles for most calibrations, large uncertainties \Rightarrow loss profiles should be interpreted very carefully by investors and rating agencies

- Future research:
 - extend model to multiple populations
 - can uncertainty aversion (ambiguity aversion) explain observed spread levels?

Contact



Daniel Bauer dbauer@gsu.edu Georgia State University USA

www.rmi.gsu.edu

Thank you!

Extra 1: Short calibration trend component

