

Longevity Five, September 26th, 2009

Discussion: Pricing Mortality-linked Securities with Dependent Lives under the Multivariate Threshold Life Table

Hua Chen, Samuel H. Cox, and Jian Wen

Discussion by: Ralph Stevens
Netspar, CentER, Tilburg University
The Netherlands

Longevity Five, September 26th, 2009

Agenda

Summary

Goal?

Copula

Copula II

Extreme event probabilities

Other issues

1/8

Agenda

- Summary
- Goal?
- Copula
- Extreme event probabilities
- Other issues

Longevity Five, September 26th, 2009

Agenda

Summary

Goal?

Copula

Copula II

Extreme event probabilities

Other issues

- Pricing annuity products under dependent lives:
 - Marginal distributions:
 - i) Gompertz distribution;
 - ii) Extreme Value Theory (Generalized Pareto Distribution);
 - Dependence:
 - i) Frank copula.

Results:

- Annuity values are higher with multivariate threshold life table than without;
- Dependent mortality reduces joint and survivor annuity values.

Longevity Five, September 26th, 2009

Agenda

Summary

Goal?

Copula

Copula II

Extreme event probabilities

Other issues

- What is the goal of the paper?
 - Calculating the annuity value of the portfolio of the annuity provider;
 - To set up a general model to calculate annuity values for a (small) group of insureds;
 - Determine the (general) dependence between couple's lifes.
- Can you also use the population life table (see, e.g., Brouhns, 2008)?
- How does the paper fit in the existing literature?

Longevity Five, September 26th, 2009 Agenda

Summary

Goal?

Copula II
Extreme event probabilities
Other issues

- Minor comment: are mortality rates constant over time? For example: yearly mortality rates may be influenced by hot/cold winter/summer.
- What is the empirical value of Kendall's tau?
- Clayton copula can also cope with negative dependencies;
- Copula choice might be improved;
- How do the properties of the copula fit the data:
 - Tail dependence;
 - Time dependence (see, e.g., Spreeuw, 2006).

Longevity Five, September 26th, 2009 Agenda Summary Goal?

Copula

Copula II
Extreme event probabilities
Other issues

Extreme event probabilities

Generalized Pareto Distribution:

$$F(x) = 1 - \left(1 - \widehat{F}(N)\right) \cdot \left(1 + \epsilon \left(\frac{x - N}{\theta}\right)\right)^{-\frac{1}{\epsilon}}.$$

How accurate are the estimations?

	N_1	θ_1	ϵ_1	N_2	θ_2	ϵ_2
Bivariate	98	/0.11	0.94	98	0.64	0.01
Univariate	98 /	0.11	0.73	99 /	0.45	2.12

How likely are positive values of ϵ , see, e.g., Li, Hardy, and Tan (2009).

Longevity Five, September 26th, 2009

Agenda

Summary

Goal?

Copula

Copula II

Extreme event probabilities

Other issues

7/8

Can you perform tests:

- Extreme value probabilities, i.e., $H_0: N_1 = N_2 = \infty \text{ vs } H_1: N_1 < \infty, \text{ or } N_2 < \infty;$
- Whether there is dependence;
- Whether the univariate estimates are different from the bivariate estimates.
- Importance high ages:

 Many $100^+ \rightarrow$ easy to estimate mortality probabilities,
 few $100^+ \rightarrow$ not important for pricing.
- Do same sex annuitants have different dependence?

Longevity Five, September 26th, 2009

Agenda

Summary

Goal?

Copula

Copula II

Extreme event probabilities

Other issues