

## **Longevity Five 2009**

The Poisson log-bilinear Lee Carter model: Efficient bootstrap in life annuity actuarial analysis

by Valeria D'Amato, Emilia Di Lorenzo, Steven Haberman, Maria Russolillo, and Marilena Sibillo

Discussion by

Frederik Weber fweber@bwl.lmu.de Institute for Risk and Insurance Management Ludwig-Maximilians-Universität München



D'AMATO ET AL.: The Poisson log-bilinear Lee Carter model: Efficient bootstrap in life annuity actuarial analysis

## **Background and Contribution**



- Longevity risk of crucial importance for annuity providers due to long contract terms; but also investment risk matters
- Risk quantification important for e.g. solvency analyses
   (cf. Solvency II: internal models), focus on asset-liability-ratio
- Lee-Carter model is de facto standard in industry and academia, but has several drawbacks "solved" by extension and variations
  - popular: Poisson assumption (Brouhns et al.; Renshaw/Haberman)
- Precision of mortality forecasts to be quantified (confidence intervals) and improved (variance reduction techniques)
  - Bootstrap
  - Stratified sampling
- Present paper: assessment of longevity and interest rates risk and the impact on life annuity funding ratios



D'AMATO ET AL.: The Poisson log-bilinear Lee Carter model: Efficient bootstrap in life annuity actuarial analysis

## **Summary and Structure**



- Funding ratio: MV(future assets) / MV(future liabilities) wrt portfolio
  - Homogeneous portfolio of 1000 constant premium deferred annuities
  - Subject to mortality and interest rates
  - Inception age 30, lifelong payouts from age 65 on
- Mortality based on Lee-Carter, extended by Poisson assumption
  - Three variance reduction techniques (VRT) paralleled:
    - SP: Standard Procedure (semi-parametric bootstrap; Brouhns et al.)
    - IP: Iterative Procedure (Renshaw/Haberman)
    - SSP: Stratified Sampling (to reduce population heterogeneity)
  - Calibrated to Italian male data (1950-2006)
- Interest rate modeled as Heath/Jarrow/Morton
  - Calibrated to EURIBOR quarterly rates (01/2002-03/2009)
- **Premiums** calculated at 4% constant interest rate



D'AMATO ET AL.: The Poisson log-bilinear Lee Carter model: Efficient bootstrap in life annuity actuarial analysis

**Key Results – Interpretation and Caveat** 





- Premiums: StandardProc < IterativeProc < StratifiedSamplingProc Reflects increasing conservativeness, but stronger degree of variance reduction should result in lower premiums – which is preferable?
- Funding ratios
  - **SP** < **IP** < **SSP** for **all** time horizons. Clearly due to premium order.
  - Strongly **positive** between 1.13 and 1.58 (or 1.86).
    Suggests excessive premiums given actual mortality/interest rates couldn't (net) premiums be lowered (or benefits increased)?
  - Strictly **increasing over time.**More than sufficient premiums during accumulation w/o payouts lead to ≈50% excess funding NO profit sharing. Excess amount not needed to fulfill obligations during payout phase, instead further accumulation.
- **Projection risk:** variance of conditional expectation; SP/IP/SSP with probabilities 0.1/0.3/0.6; slight increase, reduced during payout phase. Probabilities arbitrary? Interpretation of values small or large?



D'AMATO ET AL.: The Poisson log-bilinear Lee Carter model: Efficient bootstrap in life annuity actuarial analysis

## **Suggestions for Improvement**



- Comment on the 4% constant interest rate versus HJM predictions.
  - Is a 4% fixed interest rate adequate for premium calculation?
  - What (higher) rate (or lower premiums) would still be sufficient?
- Comment on the high degree of overfunding.
  - Unbounded increase of funding ratio may seem preferable for insurers, but likely to be problematic in terms of e.g. marketing.
  - What are the implications for risk management?
- Illustrate Stratified Sampling Procedure, determination of strata.
- Minor suggestions and remarks:
  - Check dimension of projection risk is it "only" 0.06% to 0.35%?
  - Reorder diagrams: SP/IP/SSP would be consistent with tables.
  - Check notation of variables: time horizon: r vs. t vs. T; discount: w(t,j).
  - Introduce the symbols used in Eq. (7) (13).