

Longevity 5, New York –

Mortality Regimes and Pricing

S. Cox

Y. Lin

A. Milidonis

University of Manitoba University of Nebraska University of Cyprus

Discussion

D. Bauer

Content

Modeling Issues

Technical Issues

"My Conclusion"

Content

- Basic idea: Use regime-shifting (RS) models for building stochastic mortality models
- Consideration of different models:
 - ≥ 2-state RS model for combined mortality index (→ index model)
 - ≥ 2-state RS extension of Lee-Carter model (→ LC model)
- Calibration via recursive Bayesian estimation
- Focus on pricing applications
- Conclusions:
 - ▶ RS models perform better than well-known models proposed in literature
 - Model choice has economic significance: Prices differ considerably

Modeling Issues

- Index model shows structural break around 1950. Has been documented structurally in other publications:¹
 - Until 1950: infectious diseases, respiratory diseases
 - Since 1950: Improvements primarily due to improvements in health care, cardiovascular diseases
 - → Evidence that it will ever jump back?
- Choice of two states for the index model
 - ▶ no "catastrophic" states possibly not suitable for modeling CAT bonds
 - sole considerations of likelihoods may not be sufficient
 - → Addition of 3rd state? Would that depict CAT states? Significant improvement? Impact on results?

Lee-Carter extension:

- Observe only positive spikes, no negative ones. Positive jumps do not mean-revert, but stay up – biases the results since it implies increased volatility — Show simulated paths of model. Do they seem like "reasonable" mortality paths?
- → Not sure of whether it's apt for **longevity** risk modeling

Technical Issues

- Model comparison: need to penalize for extra parameters, theoretical justification for comparison of non-nested models based on likelihood-ratio test? (Arg. for RS > Jumps)
- Figure 3: Shouldn't the physical loss distribution also depend on the model? Isn't the Wang-transform related to the model in view are simple comparisons reasonable?
- ▶ How are starting values chosen for calibration?
- Esscher transform:
 - ▶ Isn't ξ = 1,000? Not 5.3 bn?
 - ▶ Mistake in Equation (5.5)? Shouldn't it be:

$$\xi = -\frac{1}{c}\log\left\{E\left[\exp\left\{-B\sum\ldots\right\}\right]\right\} \neq \frac{1}{c}\log\left\{E\left[\exp\left\{B\sum\ldots\right\}\right]\right\}$$

- \rightarrow Impact on c / prices?
- ▶ I don't know if it is alright to rely on SVD to derive κ_t 's in Lee-Carter model and then calibrate model with non-Gaussian improvements
 - \rightarrow Formal justification for Lee-Carter approach is Maximum-Likelihood does that depend on all m's being jointly normal? (\rightarrow would require κ_t 's to be normal). Already wondered in Chen & Cox (2009,JRI).

"My Conclusion"

- ► I really like the idea of using regime-switching models, and I think basic approach & estimation are nice and rigorous
- → I think it's a nice paper...
 - Problems with modeling approaches, in particular what models are applied for what purpose
- ▶ Technical issues may have significant impact on quantitative results (?)
- → ...but I believe it requires some work.

Suggestions:

- Address technical issues
- For index model, consider adding a 3rd state to model CAT component
- ► For Lee-Carter, maybe jump component + RS-baseline would be worthwhile
- I think more care is required in the model comparison. Consideration of purpose of the model when judging its appropriateness

Contact

Daniel Bauer dbauer@gsu.edu Georgia State University USA

"My Conclusion"

www.rmi.gsu.edu

Thank you!